184 research outputs found

    Estimación del punto “quasi isotrópico” de laminados de material compuesto a través de gráficos “carpet plot” con eLamX

    Full text link
    Este artículo docente muestra una metodología para llevar a cabo análisis de estructuras de laminados de material compuesto mediante un software freeware (eLamX) que aplica la teoría clásica de análisis de laminados. El artículo se centra en la utilidad de los gráficos "carpet plot" en la determinaciión del punto "quasi isotrópico" y así, pre-diseñar estructuras de laminados con el mismo comportamiento en todas las direcciones.Balart Gimeno, RA. (2015). Estimación del punto “quasi isotrópico” de laminados de material compuesto a través de gráficos “carpet plot” con eLamX. http://hdl.handle.net/10251/5195

    Interpretación de gráficos “carpet plot” para prediseño con laminados de material compuesto mediante eLamX

    Full text link
    Este artículo docente muestra una metodología para llevar a cabo análisis de estructuras de laminados de material compuesto mediante un software freewere (eLamX) que aplica la teoría clásica de análisis de laminados. El artículo se centra en la utilidad de estas herramientas en las fases de pre-diseño del material para posterior optimización con herramientas más avanzadas.Balart Gimeno, RA. (2015). Interpretación de gráficos “carpet plot” para prediseño con laminados de material compuesto mediante eLamX. http://hdl.handle.net/10251/5199

    Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites

    Full text link
    Multi-layered glass and carbon-reinforced polymer composites may exhibit unique properties comparatively with the benchmark, proven they are being tailored bounded by several requirements. The paper herein approaches issues on the influence of the various contents and orientation of UD carbon fibre constitutive on the mechanical, dynamical and thermal expansion if embedded along with glass fibres in different stacking sequencing within an unsaturated polymer resin. The results show that the architectures with the highest content of carbon fibres (e.g. GF:CF(60:40) 0 and 90 ) provide the best tensile and flexural properties, and behave better under dynamical loading conditions and temperature variations, no matter the orientation directions. In addition, it was shown that a thorough understanding can be attained, with respect to the UD carbon fibre content, and different orientations influence on the overall composite material properties, taking into account the data retrieved from dynamical and thermal expansion runs.Luca Motoc, D.; Ferrándiz Bou, S.; Balart Gimeno, RA. (2015). Effects of fibre orientation and content on the mechanical, dynamic mechanical and thermal expansion properties of multi-layered glass/carbon fibre-reinforced polymer composites. Journal of Composite Materials. 49(10):1211-1221. doi:10.1177/0021998314532151S121112214910Bunsell, A. R., & Harris, B. (1974). Hybrid carbon and glass fibre composites. Composites, 5(4), 157-164. doi:10.1016/0010-4361(74)90107-4Summerscales, J., & Short, D. (1978). Carbon fibre and glass fibre hybrid reinforced plastics. Composites, 9(3), 157-166. doi:10.1016/0010-4361(78)90341-5Kretsis, G. (1987). A review of the tensile, compressive, flexural and shear properties of hybrid fibre-reinforced plastics. Composites, 18(1), 13-23. doi:10.1016/0010-4361(87)90003-6Fu, S.-Y., Lauke, B., Mäder, E., Yue, C.-Y., & Hu, X. (2000). Tensile properties of short-glass-fiber- and short-carbon-fiber-reinforced polypropylene composites. Composites Part A: Applied Science and Manufacturing, 31(10), 1117-1125. doi:10.1016/s1359-835x(00)00068-3Stevanović, M., & Sekulić, D. P. (2003). Macromechanical Characteristics Deduced from Three-Point Flexure Tests on Unidirectional Carbon/Epoxy Composites. Mechanics of Composite Materials, 39(5), 387-392. doi:10.1023/b:mocm.0000003288.75552.cbTsukamoto, H. (2011). A mean-field micromechanical approach to design of multiphase composite laminates. Materials Science and Engineering: A, 528(7-8), 3232-3242. doi:10.1016/j.msea.2010.12.102Grozdanov, A., & Bogoeva-Gaceva, G. (2010). Carbon Fibers/Polyamide 6 Composites Based on Hybrid Yarns. Journal of Thermoplastic Composite Materials, 23(1), 99-110. doi:10.1177/0892705708095994Valenza, A., Fiore, V., & Di Bella, G. (2009). Effect of UD Carbon on the Specific Mechanical Properties of Glass Mat Composites for Marine Applications. Journal of Composite Materials, 44(11), 1351-1364. doi:10.1177/0021998309353215Mujika, F. (2006). On the difference between flexural moduli obtained by three-point and four-point bending tests. Polymer Testing, 25(2), 214-220. doi:10.1016/j.polymertesting.2005.10.006Shenghu Cao, Zhis WU, & Xin Wang. (2009). Tensile Properties of CFRP and Hybrid FRP Composites at Elevated Temperatures. Journal of Composite Materials, 43(4), 315-330. doi:10.1177/0021998308099224DUBOULOZMONNET, F., MELE, P., & ALBEROLA, N. (2005). Glass fibre aggregates: consequences on the dynamic mechanical properties of polypropylene matrix composites. Composites Science and Technology, 65(3-4), 437-443. doi:10.1016/j.compscitech.2004.09.012Kishi, H., Kuwata, M., Matsuda, S., Asami, T., & Murakami, A. (2004). Damping properties of thermoplastic-elastomer interleaved carbon fiber-reinforced epoxy composites. Composites Science and Technology, 64(16), 2517-2523. doi:10.1016/j.compscitech.2004.05.006Miyagawa, H., Mase, T., Sato, C., Drown, E., Drzal, L. T., & Ikegami, K. (2006). Comparison of experimental and theoretical transverse elastic modulus of carbon fibers. Carbon, 44(10), 2002-2008. doi:10.1016/j.carbon.2006.01.026TANIGUCHI, N., NISHIWAKI, T., HIRAYAMA, N., NISHIDA, H., & KAWADA, H. (2009). Dynamic tensile properties of carbon fiber composite based on thermoplastic epoxy resin loaded in matrix-dominant directions. Composites Science and Technology, 69(2), 207-213. doi:10.1016/j.compscitech.2008.10.002Bosze, E. J., Alawar, A., Bertschger, O., Tsai, Y.-I., & Nutt, S. R. (2006). High-temperature strength and storage modulus in unidirectional hybrid composites. Composites Science and Technology, 66(13), 1963-1969. doi:10.1016/j.compscitech.2006.01.020Pothan, L. A., George, C. N., John, M. J., & Thomas, S. (2009). Dynamic Mechanical and Dielectric Behavior of Banana-Glass Hybrid Fiber Reinforced Polyester Composites. Journal of Reinforced Plastics and Composites, 29(8), 1131-1145. doi:10.1177/0731684409103075Pothan, L. A., Potschke, P., Habler, R., & Thomas, S. (2005). The Static and Dynamic Mechanical Properties of Banana and Glass Fiber Woven Fabric-Reinforced Polyester Composite. Journal of Composite Materials, 39(11), 1007-1025. doi:10.1177/0021998305048737Jakubinek, M. B., Whitman, C. A., & White, M. A. (2009). Negative thermal expansion materials. Journal of Thermal Analysis and Calorimetry, 99(1), 165-172. doi:10.1007/s10973-009-0458-9Ito, T., Suganuma, T., & Wakashima, K. (1999). Journal of Materials Science Letters, 18(17), 1363-1365. doi:10.1023/a:1006694601493Pardini, L. C., & Gregori, M. L. (2010). Modeling elastic and thermal properties of 2.5D carbon fiber C/SiC hybrid matrix composites by homogenization method. Journal of Aerospace Technology and Management, 2(2), 183-194. doi:10.5028/jatm.2010.02026510Tsai, Y. I., Bosze, E. J., Barjasteh, E., & Nutt, S. R. (2009). Influence of hygrothermal environment on thermal and mechanical properties of carbon fiber/fiberglass hybrid composites. Composites Science and Technology, 69(3-4), 432-437. doi:10.1016/j.compscitech.2008.11.012Kia, H. G. (2008). Thermal Expansion of Sheet Molding Compound Materials. Journal of Composite Materials, 42(7), 681-695. doi:10.1177/002199830808859

    Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10853-011-6056-9Despite polypropylene is one of the most used commodity plastics, its adhesion properties are remarkably restricted by its non-polar nature which leads to low wetting properties and, consequently, poor adhesion behavior. We report the use of ultraviolet photografting process of methyl methacrylate (MMA) monomer as an efficient chemical treatment for surface activation of polypropylene. Contact angle measurements are used for evaluating changes in polypropylene wetting properties together with surface free energy calculations. Chemical changes are showed in terms of the exposure time to UV radiation. Scanning electron microscopy has been used to evaluate topography changes in a qualitative way; atomic force microscopy has been used for a quantitative evaluation of surface changes in terms of roughness. The use of Fourier transformed infrared spectroscopy has revealed the nature of the chemical changes induced by the photografting process of MMA. © 2011 Springer Science+Business Media, LLC.This study is a part of the project IPT-310000-2010-037, "ECOTEXCOMP: Research and development of textile structures useful as reinforcement of composite materials with marked ecological character" funded by the "Ministerio de Ciencia e Innovacion," with an aid of 189540.20 euros, within the "Plan Nacional de Investigacion Cientifica, Desarrollo e Innovacion Tecnologica 2008-2011" and funded by the European Union through FEDER funds, Technology Fund 2007-2013, Operational Programme on R + D + i for and on behalf of the companies." Also, microscopy services at UPV are acknowledged for SEM and AFM support.Balart Gimeno, JF.; Fombuena Borrás, V.; Boronat Vitoria, T.; Reig Pérez, MJ.; Balart Gimeno, RA. (2012). Surface modification of polypropylene substrates by UV photografting of methyl methacrylate (MMA) for improved surface wettability. Journal of Materials Science. 47(5):2375-2383. doi:10.1007/s10853-011-6056-9S23752383475Novak I, Florian S (2001) J Mater Sci 36(20):4863. doi: 10.1023/A:1011895000500Sanchis MR et al (2007) J Appl Polym Sci 105(3):1077Sanchis R et al (2008) Int J Adhes Adhes 28(8):445Sanchis RM et al (2007) J Polym Sci Part B 45(17):2390Deng HP, Yang WT (2005) Eur Polym J 41(11):2685Lisboa P et al (2006) Appl Surf Sci 252(13):4397Wang YX et al (2005) Macromol Rapid Commun 26(2):87Xing CM, Deng JP, Yang WT (2005) Macromol Chem Phys 206(11):1106El Kholdi O et al (2004) J Appl Polym Sci 92(5):2803Piletsky SA et al (2000) Macromolecules 33(8):3092Susanto H, Ulbricht M (2007) Langmuir 23(14):7818Ulbricht M (1996) React Funct Polym 31(2):165Ulbricht M, Riedel M, Marx U (1996) J Membr Sci 120(2):239Villagra Di Carlo B, Carlos Gottifredi J, Claudio Habert A (2011) J Mater Sci 46(6):1850. doi: 10.1007/s10853-010-5012-4Yang GH et al (2001) Langmuir 17(1):211Kang ET et al (1996) J Mater Sci 31(5):1295. doi: 10.1007/BF00353109Zhu JW et al (2006) Macromol Chem Phys 207(1):75Kong LB, Deng JP, Yang WT (2006) Macromol Chem Phys 207(24):2311Xing CM, Deng JP, Yang WT (2002) Polym J 34(11):801Xing CM, Deng JP, Yang WT (2002) Polym J 34(11):809Janorkar AV, Metters AT, Hirt DE (2004) Macromolecules 37(24):9151Tan L, Deng JP, Yang WT (2004) Polym Adv Technol 15(9):523Deng JP, Yang WT, Ranby B (2001) J Appl Polym Sci 80(9):1426Deng JP, Yang WT (2005) J Appl Polym Sci 95(4):903Balart J et al (2010) J Appl Polym Sci 116(6):3256Kaczmarek H (1995) Polimery 40(6):333Khan MA, Shehrzade S, Hassan MM (2004) J Appl Polym Sci 92(1):18Ganan P, Mondragon I (2004) J Mater Sci 39(9):3121. doi: 10.1023/B:JMSC.0000025841.67124.c3Maerder E et al (2007) J Mater Sci 42(19):8047. doi: 10.1007/s10853-006-1311-1Zhao Y et al (2007) J Mater Sci 42(19):8287. doi: 10.1007/s10853-007-1624-8Xing CM, Deng JP, Yang WT (2005) J Appl Polym Sci 97(5):2026Srilatha T, Rao PR (2007) Asian J Chem 19(5):3755Moon JH et al. (2007) Progress Organ Coat 59(2):106Ramesh S et al (2007) Spectrochim Acta Part A 66(4–5):123

    Evaluating the environmental impact of a series of materials on an engineering part with the Sustainability tool of SolidWorks

    Full text link
    This article aims to study of the environmental effects of selecting different materials on an engineering part by using the Sustainability tool in SolidWorks. With this tool it is possible to assess the ecoefficiency of a particular material (or set of materials) in engineering applications.Montañés Muñoz, N.; Balart Gimeno, RA.; Quiles Carrillo, LJ. (2018). Evaluating the environmental impact of a series of materials on an engineering part with the Sustainability tool of SolidWorks. http://hdl.handle.net/10251/104572DE

    A comparison between the analytical solution of a single cantilever beam fixed at one end and the use of the finite elements method (FEM) with SolidWorks

    Full text link
    Este objeto de aprendizaje se enmarca en el contexto de la formación de los graduados en ingeniería y se centra en el estudio comparativo de la resolución de un problema simple de cálculo de una viga mediante el método analítico y el empleo de herramientas basadas en el método de los elementos finitos. Este artículo docente tiene por objeto comparar las diferencias entre ambos métodos y el potencial que ofrecen las herramientas basadas en el Método de los Elementos Finitos (FEA) como herramienta de ayuda en el proceso de desarrollo de partes y ensamblajes en ingeniería.Balart Gimeno, RA.; Quiles Carrillo, LJ.; Montañés Muñoz, N. (2018). A comparison between the analytical solution of a single cantilever beam fixed at one end and the use of the finite elements method (FEM) with SolidWorks. http://hdl.handle.net/10251/103904DE

    Interpretation of the results obtained by Finite Element Analysis (FEA) in SolidWorks

    Full text link
    El artículo se centra en la interpretación de los resultados que ofrece un software de análisis mediante el método de los elementos finitos (FEA) bajo la plataforma SolidWorks. Se pretende que el alumno realice un análisis crítico de los resultados.Balart Gimeno, RA.; Quiles Carrillo, LJ.; Montañés Muñoz, N. (2018). Interpretation of the results obtained by Finite Element Analysis (FEA) in SolidWorks. http://hdl.handle.net/10251/104404DE

    Creating a CAD model of a single beam for engineering analysis with SolidWorks

    Full text link
    Artículo centrado en el desarrollo de un modelo CAD de un problema típico en el ámbito de la ingeniería, análisis de vigas.Balart Gimeno, RA.; Quiles Carrillo, LJ.; Montañés Muñoz, N. (2018). Creating a CAD model of a single beam for engineering analysis with SolidWorks. http://hdl.handle.net/10251/104387DE

    Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes

    Full text link
    The seashells, a serious environmental hazard, are composed mainly by calcium carbonate, which can be used as filler in polymer matrix. The main objective of this work is the use of calcium carbonate from seashells as a bio-filler in combination with eco-friendly epoxy matrices thus leading to high renewable contents materials. Previously obtaining calcium carbonate, the seashells were washed and grinded. The powder obtained and the resin was characterized by DSC, TGA, X-ray diffraction (XRD), X-ray fluorescence spectroscopy (XRF), and rheology plate-plate. The results show that addition of 30 wt.% of seashell bio-filler increase mechanical properties as flexural modulus (over 50%) and hardness Shore D (over 6%) and thermal properties as an increase around 13% in glass transitions temperature. The results show that the addition of calcium carbonate from seashells is an effective method to increase mechanical properties of bio-composite and to reduce the residue of seashells from industrial production. (C) 2013 Elsevier Ltd. All rights reserved.L. Bernardi would like to thank CNPq, Consejo Nacional de Desenvolvimiento Cientifico y Tecnologico - Brasil for financial support through a scholarship number.Fombuena Borrás, V.; Bernardi, L.; Fenollar Gimeno, OÁ.; Boronat Vitoria, T.; Balart Gimeno, RA. (2014). Characterization of green composites from biobased epoxy matrices and bio-fillers derived from seashell wastes. Materials and Design. 57:168-174. doi:10.1016/j.matdes.2013.12.0321681745

    The effect of sepiolite on the compatibilization of polyethylene thermoplastic starch blends for environmentally friendly films

    Full text link
    The final publication is available at Springer via http://dx.doi.org/10.1007/s10853-014-8647-8[EN] Green polyethylene is a new and attracting polymer from biobased resources (sugarcane) and identical properties to petroleum-based polyethylene. Its potential in the packaging industry is really promising. In this work, we report the use of different compatibilizer systems for green polyethylene (from sugarcane) and thermoplastic starch (30 wt% TPS) in order to increase ductile mechanical properties and biodegradable content. Typical petroleum-based graft copolymer of polyethylene with maleic anhydride (PE-g-MA) is used as reference compatibilizer, and new compatibilizer systems are developed using sepiolite. The obtained results show that sepiolite-based compatibilizers provide good compatibilization properties as observed by a remarkable increase in elongation at break and a noticeable size reduction of the TPS domains dispersed in the green polyethylene matrix as observed by scanning electron microscopy (SEM).This study has been funded by the ‘‘Conselleria d’Educacio´, Cultura i Esport’’—Generalitat Valenciana (Reference number: GV/2014/008). Authors thank Tolsa S.A for kindly supply sepiolite for this study and Microscopy Services at UPV for helping in using SEM and TEM techniques.Samper Madrigal, MD.; Fenollar Gimeno, OÁ.; Dominici, F.; Balart Gimeno, RA.; Kenny, JM. (2015). The effect of sepiolite on the compatibilization of polyethylene thermoplastic starch blends for environmentally friendly films. Journal of Materials Science. 50(2):863-872. https://doi.org/10.1007/s10853-014-8647-8S863872502Alvarenga RAF, Dewulf J (2013) Plastic vs. fuel: Which use of the Brazilian ethanol Can bring more environmental gains? Renew Energ 59:49–52Kikuchi Y, Hirao M, Narita K, Sugiyama E, Oliveira S, Chapman S, Arakaki MM, Cappra CM (2013) Environmental performance of biomass-derived chemical production: a case study on sugarcane-derived polyethylene. J Chem Eng Jpn 46:319–325Liptow C, Tillman A-M (2012) A comparative Life Cycle Assessment Study of polyethylene based on sugarcane and crude oil. J Ind Ecol 16:420–435Taghizadeh A, Sarazin P, Favis BD (2013) High molecular weight plasticizers in thermoplastic starch/polyethylene blends. J Mater Sci 48:1799–1811. doi: 10.1007/s10853-012-6943-8Park HM, Lee WK, Park CY, Cho WJ, Ha CS (2003) Environmentally friendly polymer hybrids—Part I—Mechanical, thermal, and barrier properties of thermoplastic starch/clay nanocomposites. J Mater Sci 38:909–915. doi: 10.1023/A:1022308705231Pimentel TAPF, Duraes JA, Drummond AL, Schlemmer D, Falcao R, Araujo Sales MJ (2007) Preparation and characterization of blends of recycled polystyrene with cassava starch. J Mater Sci 42:7530–7536. doi: 10.1007/s10853-007-1622-xRosa DS, Guedes CGF, Carvalho CL (2007) Processing and thermal, mechanical and morphological characterization of post-consumer polyolefins/thermoplastic starch blends. J Mater Sci 42:551–557. doi: 10.1007/s10853-006-1049-9Kaseem M, Hamad K, Deri F (2012) Thermoplastic starch blends: a review of recent works. Polym Sci Ser A 54:165–176Nafchi AM, Moradpour M, Saeidi M, Alias AK (2013) Thermoplastic starches: properties, challenges, and prospects. Starch-Starke 65:61–72Jimenez A, Jose Fabra M, Talens P, Chiralt A (2012) Edible and biodegradable starch films: a review. Food Bioprocess Tech 5:2058–2076Bikiaris D, Panayiotou C (1998) LDPE/starch blends compatibilized with PE-g-MA copolymers. J Appl Polym Sci 70:1503–1521Liu W, Wang YJ, Sun Z (2003) Effects of polyethylene-grafted maleic anhydride (PE-g-MA) on thermal properties, morphology, and tensile properties of low-density polyethylene (LDPE) and corn starch blends. J Appl Polym Sci 88:2904–2911Pedroso AG, Rosa DS (2005) Mechanical, thermal and morphological characterization of recycled LDPE/corn starch blends. Carbohyd Polym 59:1–9Rodriguez-Gonzalez FJ, Ramsay BA, Favis BD (2003) High performance LDPE/thermoplastic starch blends: a sustainable alternative to pure polyethylene. Polymer 44:1517–1526Yang L, Liu W (2010) Effects of functional groups of starch on asa emulsification and sizing. In: Sun RC, Fu SY (eds) Research progress in paper industry and biorefinery. China University of Technology Press, Guangzhou, pp 1936–1939Kapusniak J, Jochym K, Bajer K, Bajer D (2011) Review of methods for chemical modification of starch. Przem Chem 90:1521–1526Ren L, Jiang M, Tong J, Bai X, Dong X, Zhou J (2010) Influence of surface esterification with alkenyl succinic anhydrides on mechanical properties of corn starch films. Carbohyd Polym 82:1010–1013Cunha AG, Gandini A (2010) Turning polysaccharides into hydrophobic materials: a critical review. Part 2. Hemicelluloses, chitin/chitosan, starch, pectin and alginates. Cellulose 17:1045–1065Bhattacharya M (1998) Stress relaxation of starch synthetic polymer blends. J Mater Sci 33:4131–4139. doi: 10.1023/A:1004449002240Sam ST, Ismail H, Ahmad Z (2011) Soil burial of polyethylene-g-(maleic anhydride) compatibilised LLDPE/soya powder blends. Polym-Plast Technol 50:851–861Majid RA, Ismail H, Taib RM (2009) Effects of PE-g-MA on tensile properties, morphology and water absorption of LDPE/thermoplastic sago starch blends. Polym-Plast Technol 48:919–924Kahar M, Wahab A, Ismail H, Othman N (2012) Compatibilization effects of PE-g-MA on mechanical, thermal and swelling properties of high density polyethylene/natural rubber/thermoplastic tapioca starch blends. Polym-Plast Technol 51:298–303Xu Y, Thurber CM, Lodge TP, Hillmyer MA (2012) Synthesis and remarkable efficacy of model polyethylene-graft-poly(methyl methacrylate) copolymers as compatibilizers in polyethylene/poly(methyl methacrylate) blends. Macromolecules 45:9604–9610Wang N, Yu J, Ma X, Wu Y (2007) The influence of citric acid on the properties of thermoplastic starch/linear low-density polyethylene blends. Carbohyd Polym 67:446–453Kim JP, Yoon TH, Mun SP, Rhee JM, Lee JS (2006) Wood-polyethylene composites using ethylene-vinyl alcohol copolymer as adhesion promoter. Bioresource Technol 97:494–499Choudhury A, Mukherjee M, Adhikari B (2006) Recycling of polyethylene/nylon 6 based waste oil pouches using compatibilizer. Indian J Chem Techn 13:233–241Galan E (1996) Properties and applications of palygorskite-sepiolite clays. Clay Miner 31:443–453Wan C, Chen B (2011) Synthesis and characterization of biomimetic hydroxyapatite/sepiolite nanocomposites. Nanoscale 3:693–700Sarifuddin N, Ismail H, Ahmad Z (2014) Influence of halloysite nanotubes hybridized with kenaf core fibers on the physical and mechanical properties of low density polyethylene/thermoplastic sago starch blends. Polym-Plast Technol 53:107–115Scaffaro R, Botta L, Mistretta MC, La Mantia FP (2013) Processing—morphology—property relationships of polyamide 6/polyethylene blend-clay nanocomposites. Express Polym Lett 7:873–884Sarifuddin N, Ismail H (2013) Comparative study on the effect of bentonite or feldspar filled low-density polyethylene/thermoplastic sago starch/kenaf core fiber composites. Bioresources 8:4238–4257Nunez K, Rosales C, Perera R, Villarreal N, Pastor JM (2012) Poly(lactic acid)/low-density polyethylene blends and its nanocomposites based on sepiolite. Polym Eng Sci 52:988–1004Sangerano M, Pallaro E, Roppolo I, Rizza G (2009) UV-cured epoxy coating reinforced with sepiolite as inorganic filler. J Mater Sci 44:3165–3171. doi: 10.1007/s10853-009-3421-zShafiq M, Yasin T, Saeed S (2012) Synthesis and characterization of linear low-density polyethylene/sepiolite nanocomposites. J Appl Polym Sci 123:1718–1723Mir S, Yasin T, Halley PJ, Siddiqi HM, Ozdemir O, Anh N (2013) Thermal and rheological effects of sepiolite in linear low-density polyethylene/starch blend. J Appl Polym Sci 127:1330–1337Kanmani P, Rhim J-W (2014) Physical, mechanical and antimicrobial properties of gelatin based active nanocomposite films containing AgNPs and nanoclay. Food Hydrocolloid 35:644–652Olmo N, Lizarbe MA, Gavilanes JG (1987) Biocompatibility and degradability of sepiolite collagen complex. Biomaterials 8:67–69Mortazavi S, Ghasemi I, Oromiehie A (2013) Effect of phase inversion on the physical and mechanical properties of low density polyethylene/thermoplastic starch. Polym Test 32:482–491Pang M-M, Pun M-Y, Ishak ZAM (2013) Degradation studies during water absorption, aerobic biodegradation, and soil burial of biobased thermoplastic starch from agricultural waste/polypropylene blends. J Appl Polym Sci 129:3656–366
    corecore